Differential induction of mafF, mafG and mafK expression by electrophile-response-element activators.

نویسندگان

  • Julie A Moran
  • Erica L Dahl
  • R Timothy Mulcahy
چکیده

The three small Maf proteins, MafF, MafG and MafK, have been implicated in a number of physiological processes, including development, differentiation, haematopoiesis and stress response. Here we report the constitutive expression of mafF, mafG and mafK in six human cell lines derived from various tissues (HepG2, IMR-32, K-562, HEK-293, RD and A549). The expression patterns of mafF, mafG and mafK varied widely among cell lines. Because small Maf proteins have been implicated in electrophile response element (EpRE)-mediated stress response, the ability of three EpRE activators [pyrrolidinedithiocarbamate (PDTC), phenylethyl isothiocyanate (PEITC) and t-butylhydroquinone (tBHQ)] to induce small Maf expression was examined in detail in HepG2 cells. Both PDTC and PEITC induced mafF, mafG and mafK expression, whereas tBHQ failed to markedly induce any of the three small Mafs. Where a response was observed, mafF was induced to the greatest extent compared with mafG and mafK, and this response was transcriptionally mediated. PDTC also induced small Maf expression in the other cell lines examined, with patterns of induction varying among cell lines. The differences in expression among the cell lines examined, coupled with the induction patterns observed, indicate that the three small maf genes are stress-responsive, but may be regulated via differing mechanisms. Furthermore, the fact that tBHQ, PDTC and PEITC induce EpRE activity, but that tBHQ fails to markedly induce any of the small Mafs, suggests that up-regulation of small Mafs is not an absolute requirement for EpRE-mediated gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway.

The small Maf proteins, MafF, MafG, and MafK, possess a leucine zipper (Zip) domain that is required for homodimer or heterodimer complex formation with other bZip transcription factors. In this study we sought to determine the identity of the specific constituent that collaboratively interacts with Nrf2 to bind to the Maf recognition element in vivo. Studies in vitro suggested that Nrf2 forms ...

متن کامل

Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice.

The small Maf proteins (MafG, MafK, and MafF), which serve as heterodimeric partner molecules of CNC family proteins for binding in vitro to MARE sites, have been implicated in the regulation of both transcription and chromatin structure, but there is no current evidence that the proteins fulfill these functions in vivo. To elucidate possible contributions of the small Maf proteins to gene regu...

متن کامل

Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site.

Members of the small Maf family (MafK, MafF, and MafG) are basic region leucine zipper (bZip) proteins that can function as transcriptional activators or repressors. The dimer compositions of their DNA binding forms determine whether the small Maf family proteins activate or repress transcription. Using a yeast two-hybrid screen with a GAL4-MafK fusion protein, we have identified two novel bZip...

متن کامل

Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes.

Biochemical analysis of megakaryocytes, the precursors of blood platelets, is limited by their rarity in vivo, and studies on lineage-specific gene expression have been conducted exclusively in cell lines with limited megakaryocytic potential. Mice lacking the transcription factor NF-E2 display arrested megakaryocyte differentiation and profound thrombocytopenia. To study the heterodimeric NF-E...

متن کامل

Expression of the bZIP transcription factor TCF11 and its potential dimerization partners during development

TCF11 (also known as Nrf1 and LCR-F1) is a basic-region leucine-zipper (b-ZIP) transcription factor that is essential during embryonic development. We have carried out expression analysis at a number of developmental stages and find that while there is some localized elevated expression between 8 and 9 days post coitum (dpc), the gene is widely expressed with a constant level of mRNA transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 361 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002